This “Smart Drug” Could Hack Your Brain Chemistry to Increase Your Intelligence

The Science of Nootropics

Nootropics, broadly speaking, are substances that can safely enhance cognitive performance. They’re a group of (as yet unclassified) research chemicals, over-the-counter supplements, and a few prescription drugs, taken in various combinations—that are neither addictive nor harmful, and don’t come laden down with side-effects—that are basically meant to improve your brain’s ability to think.

Right now, it’s not entirely clear how nootropics as a group work, for several reasons. How effective any one component of a nootropic supplement (or a stack) is depends on many factors, including the neurochemistry of the user, which is connected to genes, mood, sleep patterns, weight, and other characteristics.

However, there are some startups creating and selling nootropics that have research scientists on their teams, with the aim of offering reliable, proven cognitive enhancers. Qualia is one such nootropic. This 42 ingredient supplement stack is created by the Neurohacker Collective, a group that boasts an interdisciplinary research team including Sara Adães, who has a PhD in neuroscience and Jon Wilkins, a Harvard PhD in biophysics.

Smart Drugs

Some of Qualia’s ingredients are found in other stacks: Noopept, for example, and Vitamin B complex are some of the usual suspects in nootropics. Green tea extract, L-Theanine, Taurine, and Gingko Biloba are also familiar to many users, although many of the other components might stray into the exotic for most of us. Mucuna Pruriens, for example, is a source of L-Dopa, which crosses the blood–brain barrier, to increase concentrations of dopamine in the brain; L-Dopa is commonly used to treat dopamine-responsive dystonia and Parkinson’s disease.

New Article DrugsThe website says that the ‘smart drug’ is designed to provide users with “immediate, noticeable uplift of [their] subjective experience within 20 minutes of taking it, as well as long-term benefits to [their] neurology and overall physiologic functioning.” For people climbing their way up in Silicon Valley, it’s a small price to pay. What would you do with 10 percent more productivity, time, income, or intelligence?

Note: Futurism curates the products that could help reshape our world. Here, we have partnered with the team behind Qualia in order to offer readers a 10% discount using the coupon code ‘futurism’. Futurism also has affiliate partnerships, so we may get a share of the revenue from purchases.

The post This “Smart Drug” Could Hack Your Brain Chemistry to Increase Your Intelligence appeared first on Futurism.

We Need to Prepare for a World Without Aging

Extending the Human Lifespan

Humans have always been fascinated by the prospect of long life. For a classic take on this idea from one of the greats, check out Kurt Vonnegut’s short story from 1954 Tomorrow and Tomorrow and Tomorrow — he paints a portrait of a crumbling society after the invention of an anti-aging drug. You might think that life extension is just the stuff of science fiction, fantasy, and horror, but scientists have been studying how aging works — and how we can stop it — for decades.

4 Scientifically Proven Ways to Help Reverse Aging
Click to View Full Infographic

A 2015 editorial published in Nature Medicine said that aging is the greatest risk factor for many chronic human diseases, and that if aging can be slowed, the chance of getting these diseases can be pushed off too. A report from the World Health Organization notes that not all people age at the same rate, and the occurrence of disease isn’t a guarantee. Genetic or environmental factors have a hand in this, and scientists are continually studying what exactly influences aging.

The Wellderly Study, published in 2016, linked cognitive health to physical health. You might also remember the studies done on mice involving the transfusion of blood; younger mouse (and human) blood allowed mice to thrive, while the blood of older mice negatively impacted their brains, livers, and hearts. Maybe vampires have the right idea.

Destroying old cells in mice also had promising effects, as reported by Nature in February. When senescent cells (cells that can’t divide) build up in aging animals, the cells “release molecules that can harm nearby tissues.” Mice were genetically engineered so that their senescent cells would be destroyed upon injection of a drug. These engineered mice had lifespans 20 to 30 percent longer than their normal mice counterparts.

In 2015, the FDA authorized the first clinical trials of a drug, Metformin, that has the potential to extend the human lifespan up to 40 percent (along with boosting the time span that people can enjoy optimal health). It’s impressive how many theories are out there in the scientific community to stop the effects of aging, and as the years go by, there could be hundreds more. This prospect is exciting for many, but it also raises several questions and challenges.

The Future of Aging

So how can we prevent Vonnegut’s vision of the future from happening if we extend the lifespans of humans? Should we even extend human lifespans? We’re already one of the longest-living land animals on Earth. There are ethical and social problems to consider if life extension becomes the norm, and many of these were brought up in a debate sponsored by Intelligence Squared.

Would slowing aging — or even eliminating it — change what it means to be a human? Humans are already quite self-centered as a species (prioritizing our own survival and standard of living over the planet itself and many other species). The planet can only sustain so many humans comfortably, and it’s currently strained as it is. If fewer people died, that would crowd us even more.

There’s also the argument that new generations become more progressive and open to change versus older generations. Without the older population dying off, there’s less potential for different perspectives and new ideas. Dying also gives our lives meaning in regards to time — when time is a finite resource, we cherish it more.

From the opposite side, research into anti-aging will make us healthier in the last years of our lives, making healthcare less expensive for the elderly. Medical research has had to focus on many diseases and conditions, but if the focus is on aging itself, hopefully the potential to develop those diseases will diminish.

We can also greatly benefit from the experience and wisdom of older people as a society. It’s detrimental to science to ignore these avenues of research. Anti-aging research also can lead to other research, such as how to sustain bigger populations. Urban Skyfarm is just one idea that would provide housing, farming, clean air, and renewable electricity.

Careful urban planning will be a necessity as we move forward. Many scientists studying longevity believe that, in the end, the benefits of anti-aging research outweigh the negatives. Even if we can’t stop aging completely, we can make the last years of our lives more comfortable and less marred by disease and discomfort.

The post We Need to Prepare for a World Without Aging appeared first on Futurism.

Scientists Are Exploring a Link Between Our Minds and the Quantum World

Could Quantum Consciousness Exist?

Despite all the research we’ve done, we still know relatively little about how the human brain works, and we know even less about the mystery of “consciousness.” Scientists disagree about whether consciousness exists at all outside the illusions of our own collective imagination. Some believe it exists independently although we’ve yet to understand its origins have brought quantum physics into the discussion.

This is probably in part because of the way that the “observer effect” challenged one of science’s most basic tenets: that there is an objective, observable reality that exists whether we’re looking at it or not. The revelation that observing and measuring quantum effects changes their behavior is troubling, but it also suggests to many people that consciousness itself is part of quantum theory. Moreover, as humans creating AI that, for all its achievements still can’t master some of the things that come so easily to our own minds (at least not yet), we are bound to see a blurry reflection of ourselves in quantum computers, which promise to achieve so much more than ordinary computers ever could.

However, it was the British physicist Roger Penrose who pointed out that, observer effect aside, quantum mechanics may be involved in consciousness. More specifically, he thought it might be possible that quantum events cause molecular structures in the brain to alter their state and trigger neurons in different ways; that literal quantum effects within the brain exist. 

Reprogramming the Human Mind: Here’s How We’ll Make Humanity 2.0 [INFOGRAPHIC]
Click to View Full Infographic

For all we can accomplish with the human brain, it has its foibles, and perhaps suspecting the existence of quantum consciousness is one of them. We possess superior intellects because of our high-level pattern processing abilities, but it is also a well-proven fact that the human brain is prone to see meaningful patterns where none exist; in the midst of meaningless noise. And while the study of quantum physics is certainly not meaningless noise, it’s possible that our minds — which are meaning making machines — are wrong to see themselves in quantum effects. Does it really make sense to think that our lack of understanding of both consciousness and quantum mechanics points to a larger connection?

Our Participatory Universe

There is more to this question than the raw interest of philosophy: if there is in fact a connection between quantum mechanics and human consciousness, any major breakthrough in our understanding of either could help us understand both. For example, advances in quantum computing could enable us to master brain augmentation and uploading consciousness, opening the door to a form of immortality. Improved understanding of the superposition property could teach us how to conquer multiple mutually-exclusive ideas at once.

Or, perhaps we’ve been approaching this in the wrong way. As we look at quantum mechanics, we ask ourselves whether we disturb the effects by measuring, or whether it is the act of noticing the measurement impacting our consciousness that causes the disturbance. Is it possible that knowing how to think in the right way—achieving a quantum consciousness—will allow us to perceive quantum mechanics properly for the first time? We’ve always been part of Wheeler’s participatory universe in some sense, lending our interpretation to what reality is as we record our own history.

For now, most of the scientific community regards quantum effects in the brain skeptically—an appropriate response at this point. Fueling the fast retreat from any quantum consciousness theories in the scientific community is the New Age quantum consciousness trend and the cottage industry arising from it with plenty of avid bloggers writing about things like telepathy, the afterlife, and telekinesis, and crafters selling art and other products.

Whether or not consciousness influences quantum mechanics, and whether or not we eventually require quantum theory to fully comprehend how the brain works, for now we can enjoy the useful discomfort the association provides. Quantum theory has forced us out of our collective comfort zone as we consider new ways of thinking, and found ourselves living inside our own theories.

The post Scientists Are Exploring a Link Between Our Minds and the Quantum World appeared first on Futurism.

Paralyzed Man Uses Exoskeleton to Run Race for Policy Change

The Journey

Rarely do we hear about a story as incredible as Adam Gorlitsky’s. Although he was paralyzed from the waist down as a result of a terrible car accident from 10 years ago, he continues to complete 10-kilometer (6-mile) foot races across the country. An impossible feat made possible thanks to the advent of reliable, robotic exoskeletons.

Exoskeletons: The Journey From Science Fiction to Science Fact
Click to View Full Infographic

Thanks to the “ReWalker” exoskeleton produced by the company ReWalk Robotics, Adam is able to walk once more. Gorlitsky’s case is a powerful testament to what a light, wearable exoskeleton with motors at the hip and knee joints can do for people with daunting disabilities.

The battery-powered, computerized, robot prosthetic was offered to Gorlitsky during a clinical trial, and after the trial Gorlitsky couldn’t shake off the immense confidence and freedom that the suit had given him after nearly a decade of feeling powerless. Deciding that the suit can drastically improve his standard of living, Gorlitsky launched a GoFundMe campaign in 2015 that sold a line of I Got Legs t-shirts; helping him make a down payment on the new ReWalk Personal 6.0 exoskeleton suit.

A Project to Help Others

Gorlitsky’s journey didn’t end there. He has since then joined forces with director Warren Adcock to bring the story of how the Rewalk changed Gorlitsky’s life through a documentary. Through the film, I Got Legs: Or How I Learned to Stop Worrying and Love the Exoskeleton, the team aims to share Gorlitsky’s journey while advocating for the “right to walk,” the chief slogan and goal of Adam’s non-profit organization, I Got Legs.  Supporters can back the documentary for various rewards through its Kickstarter page.

The documentary will touch upon several key moments in Adam’s life, underscoring his ability to look past personal struggles and fight not only for himself, but also for others with spinal injuries. Adam’s confidence and courage stem from his access to an exoskeleton suit, a suit that he advocates for others through critical insurance policy reform.

If the team raises its $70,000 goal by May, they plan to release the documentary sometime in 2018.

The post Paralyzed Man Uses Exoskeleton to Run Race for Policy Change appeared first on Futurism.

The Future of the Human Brain: Smart Drugs and Nootropics

A Scientific Way of Enhancing Performance?

Doing research to define what nootropics are is kind of like asking Tekkies which VPN is the best one to use. You get an avalanche of responses from a group of people who are absolute evangelists for the technology, and each is totally sold on their particular solution. This isn’t a criticism; it is the observation of an interested outsider looking in on a movement—the movement to achieve next level humanity.

Nootropics, broadly speaking, are substances that can safely enhance cognitive performance. We’re not talking about convincing your doctor to write you a Ritalin or Adderall prescription to help you stay awake longer. We’re talking about a group of (as yet unclassified) research chemicals, over-the-counter supplements, and a few prescription drugs, taken in various combinations—that are neither addictive nor harmful, and don’t come laden down with side-effects—that are basically meant to improve your brain’s ability to think.

Part of the secret sauce of nootropics is finding the right combination of the right substances, and taking them in the right amounts and proportions at the right times. That series of alignments is your “stack,” and a growing number of Silicon Valley innovators are relying on their stacks every day.

The idea behind nootropics is not taking a magic pill and transforming yourself into a genius instantly. The core value here is optimization.

Some nootropics you’ve probably already tried, like fish oil or caffeine, or maybe creatine or L-theanine, an amino acid commonly found in green tea. Others you may not have heard of, substances like the class of about 20 drugs called “racetams.”

To be clear, the idea behind nootropics is not taking a magic pill and transforming yourself into a genius instantly. The core value here is optimization, incremental changes—sometimes tiny ones—that together produce a cumulative effect that is powerful and progressive. Nootropics isn’t like winning the lottery (something that happens all in one day). They are investing; they are cashing in on compound cognitive interest.

In other words, nootropics are not like the pills in Limitless, which make you super-smart instantly. Rather, they pose the seductive question of what you might achieve if you were 10 percent more productive…all the time.

Via Pixabay
Via Pixabay

Optimization Neuroscience

Right now, it’s not entirely clear how nootropics as a group work, for several reasons. How effective any one component of a nootropic supplement (or a stack) is depends on many factors, including the neurochemistry of the user, which is connected to genes, mood, sleep patterns, weight, and other characteristics. In other words, results vary, and they can vary a lot.

Second, some nootropic components have received more research attention than others. For example, it is well-known how caffeine affects the body. Unfortunately, as anyone with a coffee habit can tell you, the benefits of caffeine can be lost over time as your body builds up a tolerance to it, and some people experience withdrawal-like symptoms when they don’t ingest caffeine, including headaches.

This is where the amino acid L-theanine comes back into the picture, because research has shown that it reduces physiological and psychological stress responses, making it a great partner for caffeine. It also promotes neuronal health. Studies on the two substances taken together show that they promote alertness, attention, and task switching abilities. This is why the L-theanine and caffeine combination is part of many stacks.

The third factor in ‘where the science behind nootropics stands’ is that many of these substances have been the subject of research studies that proponents don’t think are exactly on point. For example, Kamal Patel points out that Racetams are designed to improve cognitive function, but also notes that researchers aren’t exactly sure what their mechanisms are. According to Patel, this is in part because most research on Piracetam focuses on the elderly and people with real cognitive deficits; in contrast, the people who use nootropics are primarily young professionals who are already at the top of their game (at least, their unenhanced game).

The science behind nootropics is promising, but it is in its nascent phase.

That said, there are a number of studies that have found benefits in nootropics. One study found that brain function in elderly patients improved significantly with regular doses of Piracetam. Other research has shown that Piracetam improves memory in adults and can help students improve their nonverbal learning skills. The bottom line here is that researchers know Piracetam has some positive benefits, but they don’t yet understand why or how.

So, ultimately, the science behind nootropics is promising, but we are still in the early research stage, meaning that it is very hard to say anything definitive about combinations and how they work.

One final point of interest regarding research and nootropics is that the dedicated fan base of nootropic users are currently serving as their own long-term research cohort. They meet in person sometimes, for everything from informational seminars to meditation contests. They gather in their own nootropics Subreddit and in other online forums, sharing information on stacks, optimizing doses, and results. This is DIY, anecdotal science, not placebo-controlled, and certainly not generalizable—but to many people looking to optimize their life (and their brain), the evidence is persuasive enough for them to give nootropics a shot.

On the Market Now

For people who are interested in self-improvement but stand firm on the scientific method, there are some reasonable options to try. There are some startups creating and selling nootropics that have research scientists on their teams, with the aim of offering reliable, proven cognitive enhancers.

Qualia is one such nootropic. This 42 ingredient supplement stack is created by the Neurohacker Collective, a group that boasts an interdisciplinary research team. Among the members of Qualia’s science team are Sara Adães, who has a PhD in neuroscience; Andrew Huberman, who is a Stanford University School of Medicine professor of Neurobiology; Lindsay Briner, who is in her third year of PhD study in cognitive neuroscience; Dr. Rishi Khatri, JD/MD; Jon Wilkins, a Harvard PhD in biophysics; and Heather Sandison, a naturopath. You can find a complete list of Qualia’s ingredients on the website, as well as some of the research behind the stack’s formulation.

Some of Qualia’s ingredients are found in other stacks: Noopept, for example, and Vitamin B complex are some of the usual suspects in nootropics. Green tea extract, L-Theanine, Taurine, and Gingko Biloba are also familiar to many users, although many of the other components might stray into the exotic for most of us. Mucuna Pruriens, for example, is a source of L-Dopa, which crosses the blood–brain barrier, to increase concentrations of dopamine in the brain; L-Dopa is commonly used to treat dopamine-responsive dystonia and Parkinson’s disease.

The website says that the ‘smart drug’ is designed to provide users with “immediate, noticeable uplift of [their] subjective experience within 20 minutes of taking it, as well as long-term benefits to [their] neurology and overall physiologic functioning.” For people climbing their way up in Silicon Valley, it’s a small price to pay. What would you do with 10 percent more productivity, time, income, or intelligence?

Note: Futurism curates products that we believe in. Here, we have partnered with the team behind Qualia in order to offer readers a 10% discount using the coupon code ‘futurism’. Futurism also has affiliate partnerships, so we may get a share of the revenue from purchases.

The post The Future of the Human Brain: Smart Drugs and Nootropics appeared first on Futurism.

How Close Are We to Melding Mind and Machine?

Leaving Limitations Behind

Just as ancient Greeks fantasized about soaring flight, today’s imaginations dream of melding minds and machines as a remedy to the pesky problem of human mortality. Can the mind connect directly with artificial intelligence, robots and other minds through brain-computer interface (BCI) technologies to transcend our human limitations? The Conversation

Over the last 50 years, researchers at university labs and companies around the world have made impressive progress toward achieving such a vision. Recently, successful entrepreneurs such as Elon Musk (Neuralink) and Bryan Johnson (Kernel) have announced new startups that seek to enhance human capabilities through brain-computer interfacing.

How close are we really to successfully connecting our brains to our technologies? And what might the implications be when our minds are plugged in

Origins: Rehabilitation and Restoration

Eb Fetz, a researcher here at the Center for Sensorimotor Neural Engineering (CSNE), is one of the earliest pioneers to connect machines to minds. In 1969, before there were even personal computers, he showed that monkeys can amplify their brain signals to control a needle that moved on a dial.

Much of the recent work on BCIs aims to improve the quality of life of people who are paralyzed or have severe motor disabilities. You may have seen some recent accomplishments in the news: University of Pittsburgh researchers use signals recorded inside the brain to control a robotic arm. Stanford researchers can extract the movement intentions of paralyzed patients from their brain signals, allowing them to use a tablet wirelessly.

Similarly, some limited virtual sensations can be sent back to the brain, by delivering electrical current inside the brain or to the brain surface.

What about our main senses of sight and sound? Very early versions of bionic eyes for people with severe vision impairment have been deployed commercially, and improved versions are undergoing human trials right now. Cochlear implants, on the other hand, have become one of the most successful and most prevalent bionic implants – over 300,000 users around the world use the implants to hear.


A bidirectional brain-computer interface (BBCI) can both record signals from the brain and send information back to the brain through stimulation. Center for Sensorimotor Neural Engineering (CSNE), CC BY-ND

The most sophisticated BCIs are “bi-directional” BCIs (BBCIs), which can both record from and stimulate the nervous system. At our center, we’re exploring BBCIs as a radical new rehabilitation tool for stroke and spinal cord injury. We’ve shown that a BBCI can be used to strengthen connections between two brain regions or between the brain and the spinal cord, and reroute information around an area of injury to reanimate a paralyzed limb.

With all these successes to date, you might think a brain-computer interface is poised to be the next must-have consumer gadget.

Still Early Days


An electrocorticography grid, used for detecting electrical changes on the surface of the brain, is being tested for electrical characteristics. Center for Sensorimotor Neural Engineering, CC BY-ND

But a careful look at some of the current BCI demonstrations reveals we still have a way to go: When BCIs produce movements, they are much slower, less precise and less complex than what able-bodied people do easily every day with their limbs. Bionic eyes offer very low-resolution vision; cochlear implants can electronically carry limited speech information but distort the experience of music. And to make all these technologies work, electrodes have to be surgically implanted – a prospect most people today wouldn’t consider.

Not all BCIs, however, are invasive. Noninvasive BCIs that don’t require surgery do exist; they are typically based on electrical (EEG) recordings from the scalp and have been used to demonstrate control of cursors, wheelchairs, robotic arms, drones, humanoid robots and even brain-to-brain communication.

But all these demos have been in the laboratory – where the rooms are quiet, the test subjects aren’t distracted, the technical setup is long and methodical, and experiments last only long enough to show that a concept is possible. It’s proved very difficult to make these systems fast and robust enough to be of practical use in the real world.

Even with implanted electrodes, another problem with trying to read minds arises from how our brains are structured. We know that each neuron and their thousands of connected neighbors form an unimaginably large and ever-changing network. What might this mean for neuroengineers?

Imagine you’re trying to understand a conversation between a big group of friends about a complicated subject, but you’re allowed to listen to only a single person. You might be able to figure out the very rough topic of what the conversation is about, but definitely not all the details and nuances of the entire discussion. Because even our best implants only allow us to listen to a few small patches of the brain at a time, we can do some impressive things, but we’re nowhere near understanding the full conversation.

There is also what we think of as a language barrier. Neurons communicate with each other through a complex interaction of electrical signals and chemical reactions. This native electro-chemical language can be interpreted with electrical circuits, but it’s not easy. Similarly, when we speak back to the brain using electrical stimulation, it is with a heavy electrical “accent.” This makes it difficult for neurons to understand what the stimulation is trying to convey in the midst of all the other ongoing neural activity.

Finally, there is the problem of damage. Brain tissue is soft and flexible, while most of our electrically conductive materials – the wires that connect to brain tissue – tend to be very rigid. This means that implanted electronics often cause scarring and immune reactions that mean the implants to lose effectiveness over time. Flexible biocompatible fibers and arrays may eventually help in this regard.

Co-adapting, Cohabiting

Despite all these challenges, we’re optimistic about our bionic future. BCIs don’t have to be perfect. The brain is amazingly adaptive and capable of learning to use BCIs in a manner similar to how we learn new skills like driving a car or using a touchscreen interface. Similarly, the brain can learn to interpret new types of sensory information even when it’s delivered noninvasively using, for example, magnetic pulses.

Ultimately, we believe a “co-adaptive” bidirectional BCI, where the electronics learns with the brain and talks back to the brain constantly during the process of learning, may prove to be a necessary step to build the neural bridge. Building such co-adaptive bidirectional BCIs is the goal of our center.

We are similarly excited about recent successes in targeted treatment of diseases like diabetes using “electroceuticals” – experimental small implants that treat a disease without drugs by communicating commands directly to internal organs.

And researchers have discovered new ways of overcoming the electrical-to-biochemical language barrier. Injectible “neural lace,” for example, may prove to be a promising way to gradually allow neurons to grow alongside implanted electrodes rather than rejecting them. Flexible nanowire-based probes, flexible neuron scaffolds and glassy carbon interfaces may also allow biological and technological computers to happily coexist in our bodies in the future.

From Assistive to Augmentative

Elon Musk’s new startup Neuralink has the stated ultimate goal of enhancing humans with BCIs to give our brains a leg up in the ongoing arms race between human and artificial intelligence. He hopes that with the ability to connect to our technologies, the human brain could enhance its own capabilities – possibly allowing us to avoid a potential dystopian future where AI has far surpassed natural human capabilities. Such a vision certainly may seem far-off or fanciful, but we shouldn’t dismiss an idea on strangeness alone. After all, self-driving cars were relegated to the realm of science fiction even a decade and a half ago – and now share our roads.


A BCI can vary along multiple dimensions: whether it interfaces with the peripheral nervous system (a nerve) or the central nervous system (the brain), whether it is invasive or noninvasive and whether it helps restore lost function or enhances capabilities. James Wu; adapted from Sakurambo, CC BY-SA

In a closer future, as brain-computer interfaces move beyond restoring function in disabled people to augmenting able-bodied individuals beyond their human capacity, we need to be acutely aware of a host of issues related to consent, privacy, identity, agency and inequality. At our center, a team of philosophers, clinicians and engineers is working actively to address these ethical, moral and social justice issues and offer neuroethical guidelines before the field progresses too far ahead.

Connecting our brains directly to technology may ultimately be a natural progression of how humans have augmented themselves with technology over the ages, from using wheels to overcome our bipedal limitations to making notations on clay tablets and paper to augment our memories. Much like the computers, smartphones and virtual reality headsets of today, augmentative BCIs, when they finally arrive on the consumer market, will be exhilarating, frustrating, risky and, at the same time, full of promise.


James Wu, Ph.D. Student in Bioengineering, Researcher at the Center for Sensorimotor Neural Engineering, University of Washington and Rajesh P. N. Rao, Professor of Computer Science and Engineering and Director of the Center for Sensorimotor Neural Engineering , University of Washington

This article was originally published on The Conversation. Read the original article.

The Conversation

The post How Close Are We to Melding Mind and Machine? appeared first on Futurism.

Elon Musk’s Attempt to Merge to the Human Brain With AI May Have Serious Problems

Musk’s Neural Lace

When Elon Musk confirmed last week that he’s working on a way to combine humans and machines, it wasn’t exactly a surprise. The Tesla and SpaceX CEO has long been in favor of a human-machine merger in order to keep up with artificial intelligence (AI) development. Not to mention avoiding the end of humankind at the hands of machines.

Neuralink is Musk’s unconventional proposal for preempting that fear. The budding company will build a device to be implanted into the human brain. This device — which is likely to be called a “neural lace” —would give the human brain the ability to directly interface with gadgets and other devices. It could also improve the human brain’s memory by increasing its storage capacity. Such brain-computer implants could also lead to improved treatments for neurological diseases and cognitive disorders. If that wasn’t impressive enough, such a device could potentially be used to reprogram a person’s neural code.

Social Inequality

In an piece he wrote for CNBC, Dustin McKissen wondered aloud how such a technology would be introduced — quite literally — into the public consciousness: “one question Musk hasn’t answered (and in fairness, it may not be his responsibility to answer) is who will have the privilege of getting a neural lace?” McKissen is the founder and CEO of PR and strategy firm McKissen + Company, whose work includes analyzing the effects of politics in the U.S. business climate.

“If the essentialness of maternity care is up for debate, it goes without saying Elon Musk’s neural lace probably won’t be covered under your insurance plan,” McKissen wrote, referring to the Obamacare repeal that has been at the forefront of U.S. political debate as of late. “In other words, not only do the rich seem to get richer—they may get the benefit of having a computer-enhanced brain.”

McKissen warns of how social inequality could render Musk’s neural lace beneficial only to a select few, rather than the human race on the whole. “What will income inequality look like if only the very wealthy get an upgrade? And will children be able to get a neural lace?,” he asked. Such a society is reminiscent of one featured in the science fiction film Elysium, where only the privileged few had access to technology’s benefits.

McKissen added: “Research has shown there is already a digital divide contributing to chronic poverty in low-income and rural communities. That digital divide will only grow when some of us can afford a brain enhanced with artificial intelligence. […] most of us are going to have to compete with computer-enhanced peers in an already unequal world.”

McKissen isn’t arguing that some people would be more deserving of access to advanced technology like a neural lace, but rather, he points out the need to improve the “current playing field” — which one could argue extends beyond the question of who gets a neural lace.

As he said, “In a world that’s growing increasingly class conscious, the ability for a relatively small number of people to become more than human could be a disaster for everyone—especially if that technology arrives in a time when income inequality is even worse than it is today.”

The post Elon Musk’s Attempt to Merge to the Human Brain With AI May Have Serious Problems appeared first on Futurism.

Real-Life Cyborgs: A Company Is Implanting Its Employees With Microchips

Worker Implants

A company based in Stockholm, Sweden, is turning its employees into “cyborgs” using a microchip implant about the size of a grain of rice. Though not the first time such microchip implants have been used, this program is the first example of such implants being made available to a company’s employees on this sort of level.

Bionics: The Astonishing Future of the Human Body
Click to View Full Infographic

“The biggest benefit I think is convenience,” Patrick Mesterton, co-founder and CEO of Epicenter, told the Associated Press. Epicenter provides network and office space to budding digital startups, and it is currently home to more than 100 companies and about 2,000 workers. The company calls itself “Stockholm’s first digital House of Innovation,” and it only started implanting workers in January 2015.

The microchips, which are implanted in the hands of employees and startup members, function as swipe cards. “It basically replaces a lot of things you have, other communication devices, whether it be credit cards or keys,” Mesterton said, who demoed opening a door just by waving his hand near it. The implant doesn’t just open doors, though. Epicenter’s “cyborg” employees can operate their printers with it or even order smoothies with a wave of their hands.

The devices aren’t mandatory, but “being chipped” has become popular amongst Epicenter’s employees, with more than 150 now implanted with the devices. The company even hosts monthly events where participants can get the implants for free, as well as parties to celebrate those who got implanted.

Cyborg Security

An obvious concern is security and privacy. “Of course, putting things into your body is quite a big step to do, and it was even for me at first,” Mesterton said, recalling his initial doubts about the implants, which carry information that can be transmitted to other devices via electromagnetic waves, but cannot receive information themselves.

“The data that you could possibly get from a chip that is embedded in your body is a lot different from the data that you can get from a smartphone,” explained Ben Libberton, a microbiologist at Stockholm’s Karolinska Institute. Such devices, he said, can be exploited by hackers to gain huge amounts of information.

“Conceptually you could get data about your health, you could get data about your whereabouts, how often you’re working, how long you’re working, if you’re taking toilet breaks and things like that,” Libberton added. The more sophisticated a microchip is, the bigger the ethical dilemmas that can come with them.

For Mesterton, there really isn’t a problem. “I mean, people have been implanting things into their body, like pacemakers and stuff to control your heart,” he said. “That’s a way, way more serious thing than having a small chip that can actually communicate with devices.”

Indeed, devices that augment the human body, whether through implants or other means, have been turning people into cyborgs for some time now. Some call the trend biohacking, and it can potentially help us do much more than simply navigate an office environment. The tech could be used to monitor health conditions or to treat neurodegenerative diseases. Elon Musk is working on his own version of such a device with a soon-to-be-launched company, Neuralink.

As one Epicenter employee said while she was being implanted, “I want to be part of the future,” and that may just mean becoming a cyborg.

The post Real-Life Cyborgs: A Company Is Implanting Its Employees With Microchips appeared first on Futurism.